
A Note on the Security of GG18

Nikolaos Makriyannis∗ Udi Peled∗

Abstract

We present attacks for information disclosure in two variants of the Gennaro and Goldfeder (CCS’2018)
protocol for threshold-ECDSA signing, including the “full” variant prescribed by the paper. Although we
could not expand this leakage into full blown key-extraction for neither variant, we consider this leakage
to be highly problematic. The two attacks target the so-called multiplicative-to-additive phase (MtA)
allowing the parties to perform two-party multiplication. Lastly, we propose simple remediation steps to
foil the attacks.

Contents
1 Introduction 1

1.1 Overview of GG18 and the Attacks . 2
1.2 Organization of the Note . 3

2 Attacking Paillier-Based 2PC Multiplication 3

3 Preliminaries 4
3.1 2PC Multiplication w/ Paillier . 5

4 Technical Overview 6
4.1 Bit-Probing Attack . 6

4.1.1 How to Remediate the Attack. 6
4.2 Attacks when ZK-Proofs are Ommited . 6

4.2.1 Bit-Probing for Least Significant Bits . 7
4.2.2 Bit-Probing for MSB’s & LSB’s. 7
4.2.3 Guessing P2’s input bit by bit. 8

Contents

1 Introduction
Threshold-ECDSA is one of the most popular application areas of practical-MPC, owing its popularity to use
of ECDSA in many cryptocurrencies. One of the earliest and more popular protocols for achieving practical
full-threshold maliciously secure ECDSA is the protocol of Gennaro and Goldfeder [3] (hereafter refered to as
GG18). In this document, we identify vulnerabilities in two different variants of the GG18 protocol in which
the adversary succeeds in obtaining leakage of the private key by means of an attack.

The first and more easily fixable vulnerability is on the protocol’s variant where the authors suggest
omitting some expensive zero-knowledge proofs. The authors conjecture that the protocol remains secure even
when the proofs are omitted.1 We show that in this variant of the protocol, where the proofs are omitted,
an attacker may probe an arbitrary number of bits of the honest-party’s secret key-share. In fact, in certain

∗Fireblocks. nikos@fireblocks.com, udi@fireblocks.com
1While the authors were aware that omitting the proof may result in some leakage, this conjecture presumed that (and may be

reasonable when) the protocol terminates as soon as even a single failure occurs. This assumption is not unrealistic in a real-world
setting.

1

cases, depending on the implementation, we show how the attacker may learn the entirety of the secret key
by sequentially probing all of the secret’s bits.

Our second attack is on the “full” version of the GG18 protocol that includes the range proofs (and also
for GG20, the follow-up protocol). We present an adversary which is able to extract the most significant bits
of the signature nonce’s inverse (also known as the ephemeral key-inverse). This leakage is not accounted for
in the security analysis and it is a clear bug for the security proof. Though we couldn’t harness this leakage
to a full blown private key extraction attack, guessing the key using this leakage seems related to the inverse
hidden number problem [1, 5], a known variant of the well studied hidden numbers problem. Thus, advances
in the inverse hidden-number problem may lead to potentially devastating (future) attacks.2

1.1 Overview of GG18 and the Attacks
For simplicity of exposition, we focus on the 2-out-of-2 threshold case, where the adversary controls one of
the two parties. The more general case of t-out-of-n threshold is a straightforward generalization (though
there is some loss in the attack’s success probability). We assume some familiarity with the threshold ECDSA
literature and the notation from GG18.

Let P1,P2 denote the parties in an execution of the protocol, and recall that after the multi-party key-
generation phase, the private key x ∈ Zq is defined as x = x1 + x2 mod q, where q is the prime order of
the underlying elliptic curve (e.g. of secp256k1), and x1 and x2 ∈ Zq are the secret shares of P1 and P2

respectively. Let N denote the Paillier public key of P1 (known to both parties), which is chosen many orders
of magnitude greater than q (e.g. |N | = 8 · |q|).

The cornerstone of the signing protocol is the so-called MtA (Multiplication-to-Addition) sub-protocol,
where Pi sends Pj the Paillier ciphertext encN (ki), which encrypts her share of the (inverse-nonce) k.3 Then,
party Pj responds with encN (ki·xj+β) (for random β) using the homomorphic properties of Paillier encryption.
In the end, Pi decrypts the received ciphertext and calculates α = ki · xj + β mod q, which is used later on
in the protocol.

The crux of both attacks is the discrepancy between the reduction modulo q after decrypting (for obtaining
α), and the reduction modulo N that happens inherently for the plaintext inside the encryption. In an honest
execution, the reduction modulo N does not occur, because the parties are instructed to choose small inputs.
However, if the parties choose large values, then it is likely that the reduction modulo N interferes with the
reduction modulo q which leads to a faulty signature and/or a failed execution of the protocol. Interestingly,
an attacker may correlate this failure with the inputs of the honest party (thus the protocol succeeds/fails only
if the honest party’s secret input satisfies certain condition). In turn, this allows the adversary to effectively
learn (parts of) the honest party’s secret.

To address the above, the standard technique (also in the “full” protocol of GG18) involves both parties
proving in zero-knowledge that their inputs (ki and xj) are chosen from a small domain, via range proofs.
However, as mentioned earlier, the authors conjectured that removing these proofs does not (substantially)
affect the security of the protocol, because the leakage is deemed tolerable.

In this document, we show that both variants of the protocol are prone to non-trivial leakage.

Key Leakage from Variant w/o the Range Proofs. We now show how a malicious P1 can extract the
ℓ least significant bits (LSBs) of the P2’s secret x2 (write bℓ−1 . . . b0 for the ℓ LSB) as follows: P1 uses input
f = 2−ℓ mod N as input to the MtA (sending encN (f) instead of encN (k1)), and guesses that bℓ−1 . . . b0 = z ∈
[0, 2ℓ−1]. After decrypting the MtA “response” α = encN (f ·x2+β) from P2, the attacker resets α := [α−f ·z
mod N] + 2−ℓ · z mod q and carries on the protocol using input k1 = 2−ℓ mod q. It is not hard to see that
the protocol will succeed (and the signature will verify) if and only if bℓ−1 . . . b0 = z, and thus the attacker
learns the least significant bit if the protocol terminates correctly.

After extracting the ℓ LSBs of x2, the next ℓ bits b2ℓ−1 . . . bℓ can be extracted by a similarly contrived f ′

(= 2−2ℓ mod N), using the knowledge of the already known bℓ−1 . . . b0 to adjust its guess of the 2ℓ LSBs.
This process can be iterated until the attacker extracts all the bits of x2.

2For leakage of the (standard, non-inverse) nonce, we mention that the key can be retrieved via the hidden-numbers problem
with as few as 40 signatures and 8-bit leakage each (for curves of size ≈ 2256, e.g. Bitcoin’s curve. For smaller curves, the key
can be recovered with even smaller leakage/fewer signatures).

3The nonce is sometimes referred to as the ephemeral key.

2

We remark that this attack succeeds only if the execution of the MtA for ki, xj is independent of the
second MtA (for ki, γj , where γ’s are used to mask the ephemeral key) in the protocol. Otherwise, if the same
encN (ki) is used in both homomorphic evaluations by P2, the failure of the protocol is not correlated with
the bits of x (because of the entropy introduced by the γ’s) and the attack is foiled. For efficiency reasons,
a reasonable implementation of the protocol will send the same encN (ki) for both MtA’s. This restriction,
however, does not appear anywhere in the security analysis, so, in principal, we consider the aforementioned
process as a legitimate attack on the protocol.

Inverse-Nonce Leakage for the Full Protocol. Our second attack extracts the ℓ most significant bits
(MSB) of the (inverse) nonce in the “full” protocol with the range proofs. We now show how a malicious P2

can extract the ℓ most significant bits (MSBs) of the P1’s (inverse) nonce k1 (write b255 . . . b255−ℓ+1 for the
ℓ MSB) as follows: In the MtA for k1, γ2, an honest P1 first sends encN (k1) (with the valid inverse nonce
share k1) P2 replies with encN (k1 · γ2 + β) for maliciously chosen γ2 = 1 and β = N − 2256−ℓ(z + 1) mod N
(guessesing that z ∈

[
0, 2ℓ − 1

]
as the ℓ MSB of k1). Notice that the small γ2 will pass the ZK range proof

verification done by P1. The attacker carries on the protocol using the chosen inputs. It is not hard to see
that the protocol will succeed if and only if the ℓ MSB of k1 are exactly z, and thus (together with knowing
k2) the attacker learns the MSB of the (inverse) ephemeral key k = k1+k2 if the protocol terminates correctly.

Because a fresh nonce is chosen with every signature generation, the above process cannot be iterated to
guess the entire ephemeral key. However, as mentioned earlier, by collecting enough leakage/signatures, we
speculate that it may be possible to mount a lattice attack via the inverse hidden number problem (though
such an attack appears impractical, given the current state of the art).

Nevertheless, the above leakage does not appear anywhere in the security analysis of GG18, and we consider
it highly problematic given how sensitive discrete log based signatures are to leakage of the (standard, non-
inverse) ephemeral key.

Remediation Techniques. We propose the following remediation plan. First, it goes without saying that
the range proofs of GG18 cannot be omitted. Second, for the attack on the full version of GG18 , we suggest
that the MtA sender (the one providing the ki) to reject (abort) the protocol if α /∈ [ε,N − ε] for a randomly
chosen ε ∈ [0,

√
N] (it is stressed that a new ε is chosen for each MtA). Effectively, introducing the noisy ε

decorrelates the aborting-event with the input of the honest party.
An alternative more robust remediation strategy is adding zero-knowledge range proofs wherever needed

(for example also for the β in the MtA response), as is done in the CMP protocol [2].

1.2 Organization of the Note
In the remainder, we present the technical material of this note. Since our contributions (attacks) may have
several application areas (not only threshold ECDSA), we opt to cast our attacks as “potential vulnerabilities
for Paillier-based two-party multiplication”. In the next section (Section 2), we give a high-level technical
overview. In Section 3, we introduce notation and technical background. In Section 4, we present our attacks.

2 Attacking Paillier-Based 2PC Multiplication
Two-party multiplication allows a pair of distrusting parties to calculate additive shares of a product x · y,
where one party holds secret input x and the other party holds secret input y. Multiplication is a fundamental
building block of arithmetic MPC (analogous to OT in Boolean MPC) and all non-trivial tasks can be reduced
to 2PC multiplication. In this note, we visit the folklore technique of using additive homomorphic encryption
(henceforth AHE) to instantiate multiplication; Alice (the initiator) encrypts her input under her own key, and
sends the resulting ciphertext to Bob (the responder). Then, Bob samples random noise σ and calculates an
encryption of x · y+σ using the homomorphic properties of the encryption scheme, and he sends the resulting
ciphertext back to Alice. Notice that the decryption of the latter ciphertext together with σ uniquely determine
x · y (and it is enough for Alice and Bob to output xy + σ and −σ respectively to obtain the desired shares).

3

Our Contributions. The purpose of this note is to highlight certain subtle points when instantiating the
above process to obtain malicious security. Specifically, motivated by applications to threshold-ECDSA, we
look at a specific AHE-based multiplication protocol, i.e. instantiations of the aforementioned multiplication
process under a specific regime of parameters, and we identify a number of vulnerabilities. Then, we propose
a simple solution to completely remediate the issue.

Notation. Let P1 and P2 denote two parties holding inputs x and y respectively such that x, y ∈ [2ℓ] for
some ℓ ∈ N. Further assume that P1 is associated with a secret-public key-pair (sk, pk) for some AHE. We
further assume that the plaintext-space of the AHE is equal to (ZN ,+), for some RSA modulus N .4 For
correctness, it is assumed that N is much larger than 2ℓ.

2PC Multiplication w/ AHE. Party P1 (the initiator) encrypts their input x under their own key. P1

sends the resulting ciphertext C = encpk(x) to P2 (the responder), together with a proof that the plaintext
value of C lies in the range [0, 2ℓ]. Then, P2 samples σ ← {0, 2λ} and calculates D = encpk(xy+ σ), using the
homomorphic properties of the encryption scheme. P2 sends D, together with a proof that ciphertext D was
obtained as an affine-like operation on C such that the multiplicative coefficient (i.e. y) lies in range [0, 2ℓ]
and the additive coefficient (i.e. s2) lies in range [0, 2λ]; the accompanying ZK-proofs are typically referred to
as range proofs. In the end, P2 outputs s2 = −σ and P1 outputs s1 = decsk(D). Observe that, in an honest
execution, s1 + s2 = x · y over the integers Z. For certain regime of parameters, we show how the protocol
can be attacked sometimes.

Regime of Parameters. As per [3, 4], we have that 2λ ≈ N (i.e. the size of the plaintext-space of the
encryption scheme). Observe that in this regime of parameters σ can be drawn from the entire domain of ZN ,
and recall that 2ℓ is much smaller than N . For concrete parameters, one can think of N ≈ 28·ℓ. In the sequel,
we show that a malicious responder P2 can choose a suitable σ such that s1 + s2 = xy over Z if and only if
the i most significant bits of x are zero5, for any (say) constant i. We refer to this attack as the bit-probing
attack.

Further Attacks on Cheaper Variant of the Protocol. When the proofs are altogether omitted, we
show further attacks in Section 4.2, including an attack that can potentially reveal the entire secret when the
attack is mounted iteratively.

Bit-Probing Attack. Let x0 . . . xℓ−1 denote the bit decomposition of x and notice that the imost significant
bits are zero if and only x < 2ℓ−i. Therefore, the attacker (P2) achieves their goal by choosing y = 1 and
σ = N − 2ℓ−i, and thus s1 + s2 = x if and only if the i most significant bits of x are all-zero. In turn, when
used within a different protocol (e.g. threshold ECDSA), the bit-probing attack gives rise to a selective-failure
which results in a biased output (biased ECDSA signatures are very vulnerable)

3 Preliminaries
Definition 3.1. We say that N ∈ N is a Paillier-Blum integer iff gcd(N,ϕ(N)) = 1 and N = pq where p, q
are primes such that p, q ≡ 3 mod 4.

Definition 3.2 (Paillier Encryption). Define the Paillier cryptosystem as the three tuple (gen, enc, dec) below.

1. Let (N ; p, q)← gen(1κ) where p and q are κ/2-long primes and N = pq. Write pk = N and sk = (p, q).

2. For m ∈ ZN , let encpk(m; ρ) = (1 +N)m · ρN mod N2, where ρ← Z∗
N .

3. For c ∈ ZN2 , letting µ = ϕ(N)−1 mod N ,

decsk(c) =

(
[cϕ(N) mod N2]− 1

N

)
· µ mod N.

4We inherit this convention from the Paillier cryptosytem. Our observations hold for many other finite structures.
5This attack can be modified for any value of the most significant bits

4

Definition 3.3 (Pedersen Commitments). Define Pedersen as the three-tuple (gen, com, dcm) below.

1. Let (N, s, t; p, q)← gen(1κ) where p and q are κ/2-long strong primes and N = pq, number t is a random
quadratic residue in Z∗

N and s← ⟨t⟩.

2. For m ∈ Z, let com(m; ρ) = C = smtρ mod N , where ρ← ZN .

3. For C ∈ Z∗
N , and (m, ρ) ∈ Z× ZN , dcm(C,m, ρ) = 1 if and only if C = smtρ mod N.

Paillier Encryption in Range. For Paillier public key N , the following relation verifies that the plaintext
value of Paillier ciphertext C lies in range I. Define

Renc =
{
(N, I, C, ;x, ρ) | x ∈ I ∧ C = (1 +N)xρN ∈ Z∗

N2

}
.

Paillier Affine Operation in Range. For Paillier public key N , the following relation verifies that a
Paillier ciphertext D ∈ Z∗

N2 was obtained as an affine-like transformation on C such that the multiplicative
coefficient (i.e. α) lies in the range I, and the additive coefficient (i.e. β) lies in the the range J . Define

Raff = {(N, I,J , D,C;α, β, ρ) | (ε, δ) ∈ I × J ∧ D = Cα · (1 +N)βρN ∈ Z∗
N2}

Definition 3.4. A NIZK proof system ΠR,H
Πnizk

for relation R is a tuple (PH,VH) of PPT algorithms with access
to random oracle H such that

• PH takes input (x,w) and outputs a string ψ.

• VH takes input (x, ψ) and outputs a bit b.

– Completeness. If (x,w) ∈ R then V(x, ψ) = 1, with overwhelming probability over ψ ← PH(x,w).

– Soundness. If x is false with respect to R (i.e (x,w) /∈ R for all w), then for any PPT algorithm
P∗H, then VH(x, ψ∗) = 0 with overwhelming probability over ψ∗ ← P∗H(x).

– HVZK. There exists a simulator S and oracle Ĥ such that for ψ̂ ← S(x), it holds and VĤ(x, ψ̂) = 1
for every x, with overwhelming probability over the random coins of S. Furthermore, the following
distributions are statistically indistinguishable. For (x,w) ∈ R: ψ ← PH(x,w) and ψ ← S(x).

3.1 2PC Multiplication w/ Paillier

FIGURE 1 (2PC Multiplication)

• Inputs: Common input is N . P1 has secret input (x1, p, q) and P2 has secret input x2 s.t.
x1, x2 ∈ ±2ℓ, N = p · q for p, q > 2ℓ.

1. Party P1 calculates C = enc1(x1, ρ) i.e. a fresh encryption of x1 and ψ ← Πenc,H
nizk (prove, C,N ;x1, ρ).

– P1 sends (C,ψ) to P2.

2. When obtaining (C,ψ), party P2 checks Πenc,H
nizk (verify, C,N, ψ) = 1 and does:

(a) Sample σ ← ±2λ and µ← ZN set D = Cx2 · enc1(σ;µ) mod N2.

(b) Calculate ψ′ ← Πaff,H
nizk (prove, C,D,N ;x2, s2, µ).

P2 sends (D,ψ′) to P1.

3. When obtaining (D,ψ′), party P1 checks Πaff,H
nizk (verify, C,D,N, ψ′) = 1.

• Outputs: P2 outputs s2 = −σ, P1 outputs s1 = dec1(D).

Figure 1: 2PC Multiplication

5

4 Technical Overview

4.1 Bit-Probing Attack
The first attack is very simple. The attacker P∗

2 causes the plaintext to wrap around the modulus if and only
if the most significant bits are all zero. This is achieved by choosing σ (the additive noise) to be equal to
N − 2ℓ−i and using value 1 as input for multiplication. See Figure 2 for the formal description.

FIGURE 2 (Attacker P∗
2 – Bit-Probing Attack)

• Inputs: Common input is N . P1 has secret input (x, p, q) and s.t. x ∈ ±2ℓ, N = p · q for p, q > 2ℓ.
P∗

2 has input i ∈ N.

1. Party P1 performs the same operations as in Figure 1.

2. When obtaining (C,ψ), party P∗
2 does:

(a) Sample µ← ZN and set D = C · enc(N − 2ℓ−i;µ) mod N2.

(b) Calculate ψ′ ← Πaff,H
nizk (prove, C,D,N ; y, s2, µ).

P∗
2 sends (D,ψ′) to P1.

3. When obtaining (D,ψ′), party P1 checks Πaff,H
nizk (verify, C,D,N, ψ′) = 1.

• Outputs: P∗
2 outputs s2 = −N + 2ℓ+i, P1 outputs s1 = dec(D).

Figure 2: Attacker P∗
2 – Bit-Probing Attack

Claim 4.1. It holds that s1 + s2 = x iff the i most significant bits of x are all zero.

Proof. Write x =
∑ℓ−1

j=0 xj2
j . The i most significant bits of x are all zero iff x < 2ℓ−i. Therefore, if x < 2ℓ−i

then s1 = x+N − 2ℓ−1 and, conversely, if x ≥ 2ℓ−i, then s1 = x− 2ℓ−1, and the claims follows.

Remark 4.2. The above can be extended to any guess of the bits (not just all-0). Write g =
∑255

j=ℓ−i gi · 2j

for the adversary’s guess. Modify the above attack by setting D = C · (1 + N)−g+N−2ℓ−i

mod N2 and
s2 = −N + g − 2ℓ−i mod q.

4.1.1 How to Remediate the Attack.

One immediate way to solve this issue is to move to the second regime of parameters using a valid (non-faulty)
ZK-proof. Alternatively, we also propose a different fix which requires minimal changes to existing systems
(though it is important to make sure that the range-proofs on the parties’ inputs are sound, otherwise a
combination of the bit-probing and hidden-giant attack is still possible (c.f. Section 4.2). We propose the
following check performed by P1 after decrypting s1 = encsk(D): P1 samples a random ε ← [0,

√
N] and

reports a failure if s1 /∈ [ε,N − ε], or proceeds like before and simply outputs s1 if not.

4.2 Attacks when ZK-Proofs are Ommited
There are several additional attacks that can be carried out when the range proofs are entirely omitted. Next
we present how a corrupted P2 can guess an arbitrary number of the honest party’s least significant bits, or
an arbitrary combination of the most significant and least significant. In addition, in Section 4.2.3, we show
how a malicious P1 may attempt to guess P2’s input bit by bit (i.e. when P2 uses the same input repeatedly
in different executions).

In the sequel, it is assumed that the parties perform the multiplication modulo a prime q0 (unrelated to
the factorization and much smaller than the Paillier modulus N).

6

FIGURE 3 (Attacker P∗
2 Probing LSB’s)

• Inputs: Common input is N . P1 has secret input (x, p, q) and s.t. x ∈ ±2ℓ, N = p · q for p, q > 2ℓ.
P∗

2 has input i ∈ N.

1. Party P1 performs the same operations as in Figure 1.

2. When obtaining (C,ψ), party P∗
2 does:

Set u = 2−i mod N and D = Cu mod N2, and sends D to P1.

• Outputs: P∗
2 outputs 0, P1 outputs s1 = dec1(D) mod q0.

Figure 3: Attacker P∗
2 Probing LSB’s

4.2.1 Bit-Probing for Least Significant Bits

Claim 4.3. It holds that s1 + s2 = 2−ix mod q0 iff the i least significant bits of x are all zero.

Proof. Define the Bézout coefficients (u, v) and (λ, µ) such that u · 2i + v ·N = 1 and λ · 2i + µ · q0 = 1 and
notice that |µ| ≤ 2i. Further notice that s1 + s2 = 2−ix mod q0 is equivalent to the existence of α < N/q0
such that (λ− u)x = α · q0 mod N . Calculate

(λ− u)x = α · q0 mod N ⇐⇒(
1− µ · q0

2i
− u

)
x = α · q0 mod N ⇐⇒(

(1− µ · q0)− 2iu
)
x = 2i · α · q0 mod N ⇐⇒

((1− µ · q0)− 1) k = 2i · α · q0 mod N ⇐⇒
µ · k = 2i · α mod N

Since neither side of the congruence wraps around N , and µ and 2i are coprime, we deduce that 2i divides
k.

Remark 4.4. The above can be extended to any guess of the bits (not just all-0). Write g =
∑i−1

j=0 gj · 2j for
the adversary’s guess. Modify the above attack by setting D = (C · (1 + N)−g)u mod N2 and s2 = g · 2−i

mod q0.

4.2.2 Bit-Probing for MSB’s & LSB’s.

FIGURE 4 (Attacker P∗
2 Probing LSB’s & MSB’s)

• Inputs: Common input is N . P1 has secret input (x, p, q) and s.t. x ∈ ±2ℓ, N = p · q for p, q > 2ℓ.
P∗

2 has inputs i, j ∈ N.

1. Party P1 performs the same operations as in Figure 1.

2. When obtaining (C,ψ), party P∗
2 does:

Set u = 2−i mod N and D = Cu · (1 +N)N−2ℓ−j−i mod N2, and sends D to P1.

• Outputs: P∗
2 outputs N − 2ℓ − j − i mod q0, P1 outputs s1 = dec1(D) mod q0.

Figure 4: Attacker P∗
2 Probing LSB’s & MSB’s

Claim 4.5. It holds that s1 + s2 = 2−ix mod q0 iff the i least significant bits and the j most significant bits
of x are all zero.

7

Proof. Assume that to 2i does not divide x. Let ux = σ + Ns for σ ∈ [N], and, depending on σ > 2ℓ−i−j ,
either s1 = (ux−Ns) +N − 2ℓ−i−j or, s1 = (ux−Ns)− 2ℓ−i−j . Therefore, if s1 + s2 = 2−ix mod q0, then
either (ux−Ns) +N = λx+ r · q0 or (ux−Ns) +N = λx+ r · q0 with r < N/q0. In either case, you get that
(u− λ)x mod N = rq0 which boils down to 2i divides x – contradiction. Next, assume that 2i divides x and
deduce that the test passes only if the most significant bits of x are zero.

Remark 4.6. For an arbitrary guess just remove the guess from C and adjust s2 accordingly.

4.2.3 Guessing P2’s input bit by bit.

FIGURE 5 (Attacker P∗
1 guessing P2’s input bit by bit)

• Inputs: Common input is N . P2 has secret input (x, p, q) and auxiliary input y∗ = y mod 2j .
P2 has input y. Write v = 2−j−1 mod N and γ = 2−j−1 mod q0.

1. Party P1 sends C = enc(v) to P1.

2. When obtaining C, party P∗
2 performs the same operation as in Figure 1.

• Outputs: P∗
1 outputs s1 = [dec(D)− vy∗ mod N] + γy∗ mod q0, P2 outputs s2.

Figure 5: Attacker P∗
1 guessing P2’s input bit by bit

Claim 4.7. It holds that s1 + s2 = 2−j−1x mod q0 iff y∗ = y mod 2j+1, i.e. if the (j + 1)-th bit of y is 0.

Proof. Write β for the noise added by P2 and notice that

[v · (yj2j + yj+12
j+1 + . . .) + β mod N] + γ(y0 + . . .+ yj−12

j−1)

=

2−(j+1) · y + β mod q0 if yj = 0

[2−1 mod N] + β + 2−(j+1) · y mod q0 if yj = 1 ∧ ¬wrap
[2−1 mod N] + β −N + 2−(j+1) · y mod q0 if yj = 1 ∧ wrap

Conclude that s1 + s2 = 2−(j+1)y mod q0 if and only if yj = 0, since (N + 1)/2 and (−N + 1)/2 ̸= 0
mod q0.

References
[1] D. Boneh, S. Halevi, and N. Howgrave-Graham. The modular inversion hidden number problem. In

C. Boyd, editor, Advances in Cryptology - ASIACRYPT 2001, 7th International Conference on the Theory
and Application of Cryptology and Information Security, Gold Coast, Australia, December 9-13, 2001,
Proceedings, volume 2248 of Lecture Notes in Computer Science, pages 36–51. Springer, 2001. doi: 10.
1007/3-540-45682-1_3.

[2] R. Canetti, N. Makriyannis, and U. Peled. Uc non-interactive, proactive, threshold ecdsa. Cryptology
ePrint Archive, Report 2020/492, 2020. https://eprint.iacr.org/2020/492.

[3] R. Gennaro and S. Goldfeder. Fast multiparty threshold ECDSA with fast trustless setup. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS 2018, Toronto,
ON, Canada, October 15-19, 2018, pages 1179–1194, 2018. doi: 10.1145/3243734.3243859. URL https:
//doi.org/10.1145/3243734.3243859.

[4] R. Gennaro and S. Goldfeder. One round threshold ECDSA with identifiable abort. IACR Cryptol. ePrint
Arch., 2020:540, 2020. URL https://eprint.iacr.org/2020/540.

[5] J. Xu, S. Sarkar, L. Hu, H. Wang, and Y. Pan. New results on modular inversion hidden number problem
and inversive congruential generator. In A. Boldyreva and D. Micciancio, editors, Advances in Cryptology –
CRYPTO 2019, pages 297–321, Cham, 2019. Springer International Publishing. ISBN 978-3-030-26948-7.

8

https://eprint.iacr.org/2020/492
https://doi.org/10.1145/3243734.3243859
https://doi.org/10.1145/3243734.3243859
https://eprint.iacr.org/2020/540

	Introduction
	Overview of GG18 and the Attacks
	Organization of the Note

	Attacking Paillier-Based 2PC Multiplication
	Preliminaries
	2PC Multiplication w/ Paillier

	Technical Overview
	Bit-Probing Attack
	How to Remediate the Attack.

	Attacks when ZK-Proofs are Ommited
	Bit-Probing for Least Significant Bits
	Bit-Probing for MSB's & LSB's.
	Guessing P2's input bit by bit.

